Strict Standards: Non-static method Joomla\CMS\Application\SiteApplication::getMenu() should not be called statically in /www/htdocs/w010b281/vaping_star/components/com_phocagallery/router.php on line 38

Strict Standards: Non-static method Joomla\CMS\Application\CMSApplication::getMenu() should not be called statically in /www/htdocs/w010b281/vaping_star/libraries/src/Application/SiteApplication.php on line 275

Notice: Undefined variable: this in /www/htdocs/w010b281/vaping_star/libraries/src/Application/CMSApplication.php on line 370

Strict Standards: Only variables should be assigned by reference in /www/htdocs/w010b281/vaping_star/components/com_phocagallery/router.php on line 38

Notice: A non well formed numeric value encountered in /www/htdocs/w010b281/vaping_star/components/com_studies/views/studies/view.html.php on line 64

Notice: A non well formed numeric value encountered in /www/htdocs/w010b281/vaping_star/components/com_studies/views/studies/view.html.php on line 64

Gutachten zu e-Zigaretten oder Inhaltsstoffen der Liquids

Derzeit befinden sich 144 Gutachten in unserer Datenbank


Start: Ende:


Loading data...
Pharmacological and chemical effects of cigarette additives.


We investigated tobacco industry documents and other sources for evidence of possible pharmacological and chemical effects of tobacco additives. Our findings indicated that more than 100 of 599 documented cigarette additives have pharmacological actions that camouflage the odor of environmental tobacco smoke emitted from cigarettes, enhance or maintain nicotine delivery, could increase the addictiveness of cigarettes, and mask symptoms and illnesses associated with smoking behaviors. Whether such uses were specifically intended for these agents is unknown. Our results provide a clear rationale for regulatory control of tobacco additives.

Veröffentlicht in: American journal of public health

Veröffentlicht im: Oct 2007

Preclinical safety evaluation of inhaled cyclosporine in propylene glycol.


Cyclosporine inhalation solution has the potential to improve outcomes following lung transplantation by delivering high concentrations of an immunosuppressant directly to the allograft while minimizing systemic drug exposure and associated toxicity. The objective of these studies was to evaluate the potential toxicity of aerosolized cyclosporine formulated in propylene glycol when given by inhalation route to rats and dogs for 28 days. Sprague-Dawley rats received total inhaled doses of 0 (air), 0 (vehicle, propylene glycol), 7.4, 24.3, and 53.9 mg cyclosporine/kg/day. In a separate study, beagle dogs were exposed to 0, 4.4, 7.7, and 9.7 mg cyclosporine/kg/day. Endpoints used to evaluate potential toxicity of inhaled cyclosporine were clinical observations, body weight, food consumption, respiratory functions, toxicokinetics, and clinical/anatomic pathology. Daily administration of aerosolized cyclosporine did not result in observable accumulation of cyclosporine in blood or lung tissue. Toxicokinetic analysis from the rat study showed that the exposure of cyclosporine was approximately 18 times higher in the lung tissue compared to the blood. Systemic effects were consistent with those known for cyclosporine. There was no unexpected systemic toxicity or clinically limiting local respiratory toxicity associated with inhalation exposure to cyclosporine inhalation solution at exposures up to 2.7 times the maximum human exposure in either rats or dogs. There were no respiratory or systemic effects of high doses of propylene glycol relative to air controls. These preclinical studies demonstrate the safety of aerosolized cyclosporine in propylene glycol and support its continued clinical investigation in patients undergoing allogeneic lung transplantation.

Veröffentlicht in: Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine

Veröffentlicht im: Nov 2007

Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse.


A challenge in drug dependence is to delineate long-term behavioral and neurochemical modifications induced by drugs of abuse. In rodents, drugs of abuse induce locomotor hyperactivity, and repeating injections enhance this response. This effect, called behavioral sensitization, persists many months after the last administration, thus mimicking long-term sensitivity to drugs observed in human addicts. Although addictive properties of drugs of abuse are generally considered to be mediated by an increased release of dopamine in the ventral striatum, recent pharmacological and genetic experiments indicate an implication of alpha1b-adrenergic receptors in behavioral and rewarding responses to psychostimulants and opiates. Later on, it was shown that not only noradrenergic but also serotonergic systems, through 5-HT(2A) receptors, were controlling behavioral effects of drugs of abuse. More recently, experiments performed in animals knockout for alpha1b-adrenergic or 5-HT(2A) receptors indicated that noradrenergic and serotonergic neurons, besides their activating effects, inhibit each other by means of the stimulation of alpha1b-adrenergic and 5-HT(2A) receptors and that this mutual inhibition vanishes in wild type mice with repeated injections of psychostimulants, opiates or alcohol. Uncoupling induced by repeated treatments with drugs of abuse installs a stable sensitization of noradrenergic and serotonergic neurons, thus explaining an increased reactivity of dopaminergic neurons and behavioral sensitization. We propose that noradrenergic/serotonergic uncoupling is a common stable neurochemical consequence of repeated drugs of abuse which may also occur during chronic stressful situations and facilitate the onset of mental illness. Drug consumption would facilitate an artificial re-coupling of these neurons, thus bringing a temporary relief.

Veröffentlicht in: Biochemical pharmacology

Veröffentlicht im: Dec 2007

Lifetime medical costs of obesity: prevention no cure for increasing health expenditure.


Obesity is a major cause of morbidity and mortality and is associated with high medical expenditures. It has been suggested that obesity prevention could result in cost savings. The objective of this study was to estimate the annual and lifetime medical costs attributable to obesity, to compare those to similar costs attributable to smoking, and to discuss the implications for prevention.

Veröffentlicht in: PLoS medicine

Veröffentlicht im: Jan 2008

Inhibition of monoamine oxidases desensitizes 5-HT1A autoreceptors and allows nicotine to induce a neurochemical and behavioral sensitization.


Although nicotine is generally considered to be the main compound responsible for addictive properties of tobacco, experimental data indicate that nicotine does not exhibit all the characteristics of other substances of abuse. We recently showed that a pretreatment with mixed irreversible monoamine oxidases inhibitors (MAOIs), such as tranylcypromine, triggers a locomotor response to nicotine in mice and allows maintenance of behavioral sensitization to nicotine in rats. Moreover, we showed by microdialysis in mice that behavioral sensitization induced by compounds belonging to main groups of drugs of abuse, such as amphetamine, cocaine, morphine, or alcohol, was underlain by sensitization of noradrenergic and serotonergic neurons. Here, this neurochemical sensitization was tested after nicotine, tranylcypromine, or a mixture of both compounds. Data indicate that, whereas neither repeated nicotine nor repeated tranylcypromine alone has any effect by itself, a repeated treatment with a mixture of nicotine and tranylcypromine induces both behavioral sensitization and sensitization of noradrenergic and serotonergic neurons. The development of neurochemical and behavioral sensitizations is blocked by prazosin and SR46349B [(1Z,2E)-1-(2-fluoro-phenyl)-3-(4-hydroxyphenyl)-prop-2-en-one-O-(2-dimethylamino-ethyl)-oxime hemifumarate], two antagonists of alpha1b-adrenergic and 5-HT(2A) receptors, respectively, but not by SCH23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride], a D(1) receptor antagonist. Finally, we found that pretreatments with WAY 100635 [N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclo-hexane carboxamide trihydrochloride], a 5-HT(1A) receptor antagonist, can also induce a behavioral and neurochemical sensitization to repeated nicotine. Complementary experiments with 8-OHDPAT (8-hydroxy-dipropylamino-tetralin), a 5-HT(1A) receptor agonist, and analysis of 5-HT(1A) receptors expression in the dorsal raphe nucleus after a tranylcypromine injection indicate that MAOIs contained in tobacco desensitize 5-HT(1A) autoreceptors to trigger the strong addictive properties of tobacco.

Veröffentlicht in: The Journal of neuroscience : the official journal of the Society for Neuroscience

Veröffentlicht im: Dec 2008